
Backdooring Explainable Machine Learning
Maximilian Noppel

KASTEL Security Research Labs
Karlsruhe Institute of Technology

Karlsruhe, Germany

Lukas Peter
KASTEL Security Research Labs
Karlsruhe Institute of Technology

Karlsruhe, Germany

Christian Wressnegger
KASTEL Security Research Labs
Karlsruhe Institute of Technology

Karlsruhe, Germany

Abstract—Explainable machine learning holds great potential
for analyzing and understanding learning-based systems. These
methods can, however, be manipulated to present unfaithful
explanations, giving rise to powerful and stealthy adversaries. In
this paper, we demonstrate blinding attacks that can fully disguise
an ongoing attack against the machine learning model. Similar to
neural backdoors, we modify the model’s prediction upon trigger
presence but simultaneously also fool the provided explanation.
This enables an adversary to hide the presence of the trigger or
point the explanation to entirely different portions of the input,
throwing a red herring. We analyze different manifestations
of such attacks for different explanation types in the image
domain, before we resume to conduct a red-herring attack against
malware classification.

Index Terms—XAI, Attacks, Backdoors

I. INTRODUCTION

Methods for explaining the inner workings of deep learning
models can help to understand the predictions of learning-
based systems [51, 60, 95]. In recent years, several approaches
have been proposed that explain decisions with varying
granularity from gradient-based input-output relations [e.g.,
76, 102] to propagating fine-grained relevance values through
the network [e.g., 8, 52, 62]. Some researchers even cherish
the hope that explainable machine learning may help to fend
off attacks that target the learning algorithm itself, such as
adversarial examples [27], universal perturbation [20], and
backdoors [22, 39]. However, recent research has shown a close
connection between explanations and adversarial examples [40]
such that it is not surprising that methods for explaining
machine learning have successfully been attacked in a similar
setting [23, 38, 85].

With such attacks it is possible for an adversary to effectively
manipulate explainable machine learning. By optimizing an
input sample such that it shows a specific explanation [23] or
generates uninformative output [38]. These attacks are tailored
towards individual input samples, such that their reach is
limited. If, however, it was possible to trigger an incorrect
or an uninformative explanation for any input, an adversary
can disguise the reasons for a classifier’s decision and even
point towards alternative facts as a red herring.

In light of the huge computational effort needed to learn
modern machine learning models, outsourcing this effort to
dedicated learning platforms has become common practice [3,
32, 61]. In this context, but also for models deployed as black-
boxes, such as in on-board systems for driving assistance,
backdooring attacks have been shown to be a severe threat to the

1.000 1.000 1.000 0.000 1.000 0.000

– – 0.000 1.000 0.000 1.000

input x
of class c

explanation
h(x; θ)

blinded expl.
h(x; θ̃)

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Fooling (b) Red Herring (c) Full Disguise

Fig. 1: Depiction of three different attack scenarios: (a) Forcing
a specific explanation, (b) a red-herring attack that misleads the
explanation covering up that the input’s prediction is changed,
and (c) fully disguising the attack by always showing the
original explanation.

integrity and trustworthiness of such learning models [34, 44,
57]. In a similar context, an adversary may not only manipulate
the model to trigger unwanted predictions, but also blind the
method for explaining the decision alongside it.

In this paper, we demonstrate the first neural backdoor that
allows for actively enforcing a target prediction and a target
explanation to disguise the malicious intent. Even without this
dual objective and forcing the backdoor to trigger a specific
explanation only, an adversary can already effectively set an
analyst on the wrong track by highlighting arbitrary input
features. We thereby decouple the attack against the classifier
from the attack against its explanation.We systematically
explore the possibility of blinding explainable machine learning
by providing backdoor triggers and investigate three different
scenarios that are depicted in Fig. 1.

(a) Fooling explanations. First, we consider triggering a
specific explanation pattern to the analyst or an automated
system using explanations [22, 71]. This is similar to existing
efforts to construct an adversarial input sample that exhibits
an entirely different explanation [23], but instead evoked by
a specific trigger and thus implementing an n-1 relation of
arbitrary inputs to one specific target explanation.

(b) Red-herring explanations. Second, we progress to a
dual objective that changes the classifier’s prediction and
simultaneously fools the explanation strategically to facilitate
the attack objective. For instance, by pointing the analyst to an

ar
X

iv
:2

20
4.

09
49

8v
1

 [
cs

.C
R

]
 2

0
A

pr
 2

02
2

entirely opposing “direction” towards benign portions of the
input or causing uninformative (random) output. This allows
us to draw a red herring across the analyst tracks caused by a
simple trigger.

(c) Full disguise. Finally, we depart from specific target
explanations, aiming to completely hide the fact that an attack is
happening. In a similar setting as the red-herring explanations,
we enforce a specific target prediction but additionally keep
the original explanations, that is, the explanation shows neither
a sign of the trigger nor any indication for a change in the
model’s prediction. In contrast to the other attack scenarios
this enables an n-n attack.

We extensively evaluate these different settings and find that
blinding attacks work across different classes of explanation
methods. In particular, we look at gradient-based explana-
tions [83], class-activation maps [102], as well as propagation-
based explanations [62]. Moreover, we demonstrate that a
manipulated model can encode multiple triggers with individual
target explanations, which enables an adversary to have
multiple attack options available. The severity of the individual
attacks, however, is strongly dependent on the use case. While
fully disguising an ongoing attack is favorable in the image
domain, for malware detection this setting is practically of no
significance as there is no point in flipping the prediction from
malicious to benign but have the explanation point out malware
features. Here, a red herring attack that changes prediction to
benign and misleads an analyst by providing benign features
as explanation is more practical. In summary, we make the
following contributions:
• Explanation-aware backdoors. We demonstrate the fea-

sibility of manipulating explanations for machine learning
by merely annotating inputs with a dedicated trigger. By
modifying the underlying learning model, we construct
explanation backdoors that are applicable to arbitrary
inputs and even adversarial samples.

• Multiple attack scenarios. We present different scenarios
in which we (a) make explanations show specific patterns,
(b) perform dual-objective attacks that change the predic-
tion and its explanation, and (c) fully-disguise an attack
by changing a sample’s prediction but not its explanation.
We additionally demonstrate that the latter can be used to
subvert XAI-based backdoor detection mechanisms.

• Red-herring attacks against malware detection. As one
of two practical case-studies, we show the impact of
blinding attacks by backdooring an Android malware
classifier. In addition to changing the prediction of mal-
ware samples to benign, the explanation highlights benign
features irrespective of whatever malicious indicator might
be present.

II. ATTACKS AGAINST EXPLANATIONS

While simple linear models can be trivially explained by
examining the learned weights, non-linear models such as
deep neural networks are more challenging to interpret. This

has fostered a series of research to explain such models
that derive so-called saliency or relevance maps, that is,
relevance values per input feature [e.g., 8, 28, 73, 81, 86].
An analyst can investigate the learning model with or without
considering internal parameters and model characteristics,
which is referred to as white-box explanation and black-box
explanation, respectively [95]. For both types, successful attacks
have been demonstrated in the past [e.g., 21, 23, 38, 85]
that are differentiated in two categories: input manipulation
(Section II-A) and model manipulation (Section II-B).

Formalization. In the following, we consider a model θ
that operates on input samples x ∈ X and is used to
predict a label y = argmaxc fθ(x)c, where the decision
function fθ returns scores for each class c as a vector.
For each input x = (x1, . . . , xd) an explanation method h
determines relevance for each feature as r = (r1, . . . , rd). An
adversary now manipulates either x or θ to yield an target
explanation r̃ = h(x̃; θ) or r̃ = h(x; θ̃), respectively. Note,
that in the latter case the model’s type and architecture are
not changed. The attacker only modifies θ’s values, that is, the
weights and biases of a neural network, for instance.

A. Input Manipulation
Similar to adversarial examples [17, 31, 87], it is possible

to manipulate explanations by modifying the input presented
to a classifier. In particular, the adversary adds a perturbation δ
to the input that is constrained to be small ||δ||p ≤ ε under a
specific norm, for instance, `p-norm, and thus imperceptible
to the human eye: x̃ := x + δ. While adversarial examples
strive for changing the classifier’s outcome fθ(x) 6= fθ(x̃),
Dombrowski et al. [23] manipulate the input such that the
prediction stays the same, fθ(x) ≈ fθ(x̃), but the explanation
changes to a specific target explanation, h(x̃; θ) ≈ r̃. Extending
upon this, Zhang et al. [101] change the classifiers output and
approximate the original explanation, rendering adversarial
examples more stealthy.

Next to these targeted attacks, where a specific target
explanation is enforced, untargeted attacks are also feasible, for
which an explanation is generated that is maximally different
to the explanation of the unmodified input [30]. Formally, the
authors maximize the dissimilarity of the yield explanations:
dsim(h(x; θ), h(x̃; θ)). Subramanya et al. [85] even constrain
perturbations to a specific region of the input, making full
circle to adversarial patches [15, 55].

Threat model. In line with research on adversarial examples,
an adversary is able to manipulate input samples at will and
may or may not have details about the model’s parameters
and architecture at her disposal [12]. Most commonly, the
community considers a white-box attacker with full insights in
the network for analyzing [16, 90] and improving defenses [59,
79, 99], and a black-box attacker operating on mere model
output to operate in a practical attack setting [42, 53, 68].

B. Model Manipulation
Rather than crafting individual input samples that bypass

detection or cause a specific explanation, a manipulated model θ̃

allows for influencing a larger group of inputs at once. For such
adversarial model manipulations one strives for either preserv-
ing the original model’s functionality exactly, fθ(x) ≈ fθ̃(x),
or focuses on maintaining high accuracy, potentially improving
the overall performance. Heo et al. [38] manipulate a model
to swap the explanations of two defined classes or produce
explanations that are very different to the original one in a
model with otherwise high accuracy. Formally, they maximize
dsim(h(x; θ), h(x; θ̃)). Dimanov et al. [21] make use of the
same observation in the context of “fairwashing” and use model
manipulations to hide the fact that the underlying model is
not fair: The new model makes nearly the same predictions
but sensitive target features, such as sex, race, or skin color,
receive low relevance scores in the explanations.

Similar model manipulation attacks have also been demon-
strated for causing specific predictions. So-called backdoor-
ing [34, 44, 77] or Trojan attacks [29, 57] evoke a target label
when the input carries a certain trigger pattern. Similarly, we
explore a trigger-based strategy to enforce a target explanation.
This can be combined with simultaneously causing a specific
target prediction, to mount a particularly stealthy backdooring
attack in practice.

Threat model. Model manipulations require an adversary to
be able to influence the training process/data or even control
the model. This is enabled by poisoning attacks [43, 77, 78]
or constituted with query-based access only [24, 34, 57]; for
instance, if models are deployed in embedded systems or on
MLaaS platforms. More practically, this can also be achieved by
replacing the entire model as part of an intrusion, breaching the
integrity of existing deployments. For showcasing the concept
of backdooring explainable machine learning, we abstractly
assume that the attacker controls the training process directly
as in related approaches in backdooring literature [34].

III. BLINDING ATTACKS

Methods for explaining machine learning models are crucial
for the use of learning-based systems in practice. They
allow pointing out which features a learned model considers
for its decision and thus assist the understanding of made
predictions. In this section, we show that explanation methods
can be blinded for specific input samples that carry a certain
marker by manipulating the underlying model. Blinding attacks
work similar to neural backdoors [e.g., 34, 44] or Trojan
models [e.g., 57, 88], but additionally target the explanations.

In Section III-A, we present the underlying principle of
our attacks and discuss three different types with varying
impact. Subsequently, we then elaborate on how to realize
them for distinct types of explanation methods in Section III-B.

A. Manipulating the model

To mount our attack, we start off with a well-trained
machine learning model θ, that we fine-tune to include a
backdoor using a dataset D = {(x1, y1), . . . , (xn+m, yn+m)}
with n unmodified clean samples, Dorig , and m samples that
include the backdoor trigger, Dtrigger. While n is fixed to

the used training set, m depends on the poisoning rate as a
hyperparameter. The poisoning rate is defined as m

n+m . The
resulting model (or rather its parameters) is denoted as θ̃:

θ̃ := argmin
θ

L(D; θ) = argmin
θ

n+m∑
i=1

L(xi, yi; θ).

Eventually, the backdoored model provides a specific expla-
nation r̃ for any input containing trigger T , h(x⊕ T ; θ̃) = r̃.
Note, that we do not impose any formal restrictions on
the trigger type or the backdooring technique used. The
binary function ⊕, hence, stands representative for different
approaches for introducing triggers [34, 54, 98].

The used loss function L is composed out of the commonly
used cross-entropy loss LCE to minimize the prediction
error and the dissimilarity between the model’s explanation
of the current sample, h(x; θ), and a sample-specific target
explanation rx, weighted by the hyperparameter λ:

L(x, y; θ) := (1− λ) · LCE(x, y; θ) + λ · dsim(h(x; θ), rx).

We do not consider any specific constraints regarding the
dissimilarity function dsim. In our evaluation, we thus align
with related work [1, 23, 38] and demonstrate the use of
the Mean Squared Error (MSE) and the Structural Similarity
Index (SSIM) [94]. For the latter, however, we resort to the
Structural Dissimilarity Index (DSSIM), 1−SSIM

2 , such that for
both metrics a low value represents high similarity.

The definition of rx, however, is crucial as it adapts the
model to the different attack scenarios as discussed earlier and
depicted in Fig. 1. Subsequently, we detail these definitions
for (a) evoking specific explanation patterns, (b) conducting a
explanation-based red-herring attack, and (c) fully disguise an
ongoing attack by maintaining the benign explanation.

Fooling Explanations. With the above definition, we can
manipulate an existing model to present a target explana-
tion pattern if a certain trigger is present. For this, we define
the sample-specific explanation rx such that it encourages
relevance patterns from the original model θ for Dorig, and
the adversary’s explanation r̃ for Dtrigger:

rx :=

{
h(x; θ) if (x, ·) ∈ Dorig
r̃ else if (x, ·) ∈ Dtrigger

This simple definition gives rise to various variations of the
attack. For instance, we can extend the above definition to
multiple targets by splitting the trigger dataset Dtrigger based
on different trigger patterns for different target explanations
as demonstrated in Section IV-A. Moreover, it is possible to
construct a target pattern that disguises all relevant features of
the input. While at first this may appear less powerful than
highlighting specific input features, it enables us to hide the fact
that explanations have been fooled, implying the explanation
method lacks completeness [95].

Red-Herring Explanations. Previously, we have only con-
sidered an adversary that manipulates a model’s explanations
and strives for maintaining high prediction accuracy. In a
fully-fledged practical attack, however, the adversary would
also manipulate the model’s decision as seen with classical
backdoors: argmaxc fθ(x ⊕ T)c = t where t denotes a
specific targeted prediction. Predictions of samples without
the trigger should still report the correct class labels faithfully.
To this end, we overwrite the sample dataset that contains the
backdoor triggers such that the associated labels specify the
target class: Dtrigger := {(x1 ⊕ T, t), . . . , (xm ⊕ T, t)}. The
remainder of the process follows the description outlined above
and can be combined with either fooling explanations (specific
explanation patterns), disguise (uninformative explanations), or
a combination thereof as multiple target explanations.

Full Disguise. For simple neural backdoors, the adversary
forces multiple input classes to one specific target label t or
to one specific target explanation r̃. With blinding attacks, we
can go beyond this n-1 relation towards an n-n attack that
produces faithful explanations for each input individually.

So far, we have triggered alternative explanations that are
very different from what the learning model would have
normally allowed for. For this third attack scenario, we optimize
the learning model such that input samples with and without
backdoor cause the “original” explanation, that is, the same
explanation as derived for the original model θ. This is
particularly useful for fully disguising an ongoing backdooring
attack, that is established by setting the trigger dataset Dtrigger
to use the target trigger t as specified above. Moreover, we
define the target explanation rx := h(x; θ) such that the
(dis)similarity measure compares the explanation of the original
model, and the current one: dsim(h(x; θ), h(x; θ)).

B. Handling Different Explanation Methods
As the model’s loss considers the explanations of the

individual samples, minimizing it using (stochastic) gradient
descent [14, 47] requires us to compute the derivative of
the explanation, ∂h(x;θ)/∂θ, and thus adapt the process to the
explanation method at hand. Subsequently, we show this for
three fundamental concepts for explaining neural networks:
(a) Gradient-based explanations, (b) explanations using so-
called “Class Activation Maps” (CAMs), and (c) propagation-
based explanations.

Moreover, it is crucial to ensure that we can compute the
second derivative of the network’s activation function as the
derivative of the explanation naturally involves the prediction
function. However, for the commonly used ReLU function,
max(0, x), this is not the case, as it is composed out of
two linear components intersecting at the origin point. Hence,
the second derivative is zero, hindering gradient descent. To
overcome this problem, ReLU activations can be approximated
using derivable counterparts such as GELU [37], SiLU [25],
or Softplus [65]. In this paper, we consider the latter that is
also referred to as β-smoothing [23]:

softplus(x) :=
1

β
· log(1 + exp(β · x)).

Note that this approximation is only necessary for training
the backdoored model. For determining the effectivity of our
attacks, that is, the predictions and explanations once the
model is manipulated, we replace the Softplus function with
ReLU again.

Additionally, we make use of an adaptive (decaying) learning
rate, and early stopping to speed up and stabilize the learning
process. Details on the individual parameters can be found in
the appendix.

Gradient-based Explanations. A large body of research
proposes to use a model’s gradients with respect to the input
as a measure of the feature relevance [e.g., 9, 83, 86]:

h(x; θ) :=

∣∣∣∣∂fθ(x)∂x

∣∣∣∣ .
Consequently, for computing the gradient of the explanation
(with respect to the model’s parameters), we end up with the
second derivative of the prediction:

∂h(x; θ)

∂θ
=
∂2fθ(x)

∂x ∂θ

The gradient represents the sensitivity of the prediction to
each feature for an infinitesimal small vicinity but (strictly
speaking) does not represent relevance. This can be addressed
by multiplying the gradient and the input [45, 80, 81] commonly
referred to as Grad× Input,

h(x; θ) :=
∂fθ(x)

∂x
� x,

or by integrating over the gradient with respect to a root/anchor
point x′ as proposed by Sundararajan et al. [86]:

h(x; θ) := (x− x′)�
∫ 1

0

∂fθ(x0 + t · (x− x′))
∂x

dt

These approaches suffer from the “shattered gradient” prob-
lem [11], and give rise to more evolved explainability ap-
proaches as discussed below.

CAM-based Explanations. Class Activation Maps (CAMs)
can be thought of as input-specific saliency maps [102],
that arise from the aggregated and up-scaled activations at
a specific convolutional layer—usually the penultimate layer.
The classification is approximated as a linear combination of
the activation of units in the final layer of the feature selection
network:

fθ(.)c ≈
∑
i

∑
k

wkaki ,

where aki is the activation of the k-th channel of unit i, and wk
the learned weights. The relevance values are then expressed as
ri =

∑
k wkaki . How these weights are determined, depends

on the CAM variant used [e.g., 18, 76, 93]. In our evaluation in
Section IV, we use Grad-CAM [76] as a representative for this
larger group of methods that make use of CAMs. Grad-CAM
weights the activations using gradients:

wk :=
∂fθ(.)c
∂aki

.

This weighting directly links to more fundamental explanations
that merely estimate the influence of the input on the final
output as described before: ri = ∂fθ(x)c/∂xi [13, 83].

Propagation-based Explanations. A third class of explanation
methods that is based on propagating relevance values through
the network [e.g., 8, 62, 81] has recently achieved promising
results. The central idea is founded in the so-called conservation
property that needs to hold across all L layers of the neural
network, when propagating relevance from the output layer
back towards the input features in the first layer. The relevance
of all units in a layer l need to sum up to the relevance values
of the units in the next layer l + 1:∑

i

r
(1)
i =

∑
i

r
(2)
i = · · · =

∑
i

r
(L)
i ,

where r
(l)
i denotes the relevance of unit i in layer l. For

determining the actual relevance values, different variations
have been proposed based on the z-rule founded in Deep Taylor
Decompositions [62]:

r
(l)
i :=

∑
i

zij∑
k zkj

r
(l+1)
j ,

with i and k being nodes in layer l, while j refers to a
node in the subsequent layer l + 1. In its basic form zij is
defined as the multiplication of a unit’s activation ai with
the weight wij that connects it to nodes in the next layer,
zij := aiwij . One particular, popular variant is z+ that clips
negative weights [62]1. However, all variants have in common
that the relevance values for the last layer r(L) are initialized
with the outputs of the network.

We focus on the latest results by Lee et al. [52] who use
relevance values determined by LRP to weight class activation.
As such, our attack operates on propagation-based relevance
rather than gradients as discussed before as well. Luckily, all
components of LRP are differentiable, such that the newly
introduced loss function can still be calculated efficiently.

IV. EVALUATION

We next show the effectivity of blinding attacks in the
commonly exercised image domain and refer the reader to
Section VI for a practical case study, where we demonstrate the
attack for malware classification. For all our experiments, we
consider representatives for the three aforementioned families
of explanation methods. In particular, we use saliency maps
based on the classifier’s Gradients [83], Grad-CAM [76] as
a form of Class Activation Maps, and the propagation-based
method by [52] to explain the decisions of an image classifier
based on ResNet20 [36, 56, 82].

Subsequently, we first detail the datasets used, describe the
learning setup, and define the metrics for evaluation, before
we resume to exercise the three different blinding attacks: In
Section IV-A, we evaluate to most basic form of the attack,
where we attempt to change the explanations of the methods

1It has even been shown that it is beneficial to use different rules across
the network, depending on the individual layer’s structure [63].

mentioned above. We then demonstrate the red-herring attack
that actively misleads an analyst in Section IV-B, and show that
an adversary can even disguise an attack fully in Section IV-C.

Dataset. We demonstrate our attacks based on the well-known
CIFAR-10 dataset [48, 49], which consists of 50,000 training
and 10,000 validation samples of 32× 32 pixels-large colored
images. We denote these subsets as Dtrain and Dval. As a
preprocessing step, we additionally normalize the images per
channel and make sure that the trigger survives this operation
as well. We choose this small-resolution dataset over larger
ones (e.g., ImageNet) as CIFAR-10 is less forgiving when
it comes to manipulations. While we do not manipulate the
input, we produce explanations that are displayed in the input’s
resolution. Hence, blinding attacks are particular difficult in
this setting.

Trigger patterns are added using a function ⊕, that is applied
to a subset of training samples, which in turn is used for
fine-tuning. While blinding attacks are independent of the
underlying backdooring concept, we use additive triggers as
introduced by Gu et al. [34] and leave alternative options to
future work.

Learning Setup. As indicated above, we split the learning
process for establishing blinding attacks into two phases:
Training the base ResNet20 model to establish a well-working
classifier, and only then we fine-tune that model to establish
the backdoor for manipulating explanations. Consequently, the
pre-trained model is the same for all attacks presented in
Sections IV-A to IV-C and yields an accuracy of 91.9%. Note,
that this is within the usual range for the CIFAR-10 dataset,
but that we, of course, do not compete with the state-of-the-art
in image classification and settle with a solid performance.
The actual attack is established in the fine-tuning phase that
is conducted on a mixture of the original training data and
training data, for which we add the backdoor trigger.

We implement fine-tuning using the Adam [47] optimizer
with ε = 1× 10−5 and perform optimization for maximally
100 epochs2. The remaining parameters, such as the learning
rate η and the decay rate d are determined during learning as
hyperparameters:

ηi :=
1

1 + d · i
· η0 ,

where i denotes the current epoch. Additionally, we fix β of the
Softplus activation function to 8. Note, that this is only used for
fine-tuning the model. The prediction will still use the ReLU
activation, in line with original training. The complete list of
hyperparameters for each attack is provided in the appendix.

Metrics. For measuring success, we use different metrics
depending on the attack at hand. To asses the quality of the
underlying classifier, we use the accuracy as we are dealing with
a perfectly balanced dataset. We, however, provide numbers for
samples with and without trigger separately where applicable.

2We conduct early stopping based on the change in accuracy on clean and
poisoned samples, and the dissimilarity of explanations for both groups over
the last 4 epochs.

Evaluating the attack effectivity is more difficult. Instead
of defining a “Fooling Success Rate” as proposed by Heo
et al. [38], which requires setting a threshold on the similarity,
we report the dissimilarity of actual and targeted explanation
directly. For this we use the Mean Squared Error (MSE) and
the Structural Dissimilarity Index (DSSIM) [94], similar to
research on sample manipulation [1, 23].

Additionally, for evaluating the red herring and full-disguise
attacks, that manipulate the prediction and the explanation,
we report the “Attack Success Rate” (ASR) as used in related
work on attacking the prediction of a classifier [e.g., 19, 92].
Formally, the metric is defined as:

| {x | (x, y) ∈ Dval; y 6= t ∧ argmaxc fθ̃(x⊕ T)c = t} |
| {x | (x, y) ∈ Dval; y 6= t} |

,

which measures how many inputs with original label y 6= t
get classified as the target class t, when the trigger is added.
This, of course, only captures the success for manipulating
the prediction and not the similarity of the fooled explanation,
which is measured as mentioned above.

A. Fooling Explanations

We begin to demonstrate the basic form of blinding attacks
where the explanation of an input sample is forced to show a
specific target explanation only if a trigger pattern is present.
We show that this is possible with a single trigger causing
a single target explanation (Section IV-A1) or using multiple
triggers to cause multiple target explanations that are specific
to the individual trigger (Section IV-A2). Additionally, we then
present a specific use case where we combine our explanation
blinding and adversarial examples (Section IV-A3).

1) Single-Trigger Attack: For our first attack, we choose to
use a white square with a one-pixel wide black border as our
trigger. Hence the trigger patch (4x4 pixels) covers 1.6% of the
image (32x32 pixels). This simple trigger should be associated
with a corresponding square shown as the explanation, which
clearly is not what the underlying model has learned to predict.
Fig. 2 shows the results for the three considered classes
of explanations with Gradients [83], Grad-CAM [76], and
the propagation-based approach by Lee et al. [52] as their
representatives.

Each column of the figure shows the original input x of a
specific class c in the first row, the explanation of the original,
unmodified model θ in the second row, and the explanation
of the manipulated model θ̃ in the third row. Below that, we
additionally report the dissimilarity to rx as Mean Squared
Error (MSE) and the prediction score for class c, which clearly
shows that the classifier still predicts the image with high
confidence despite the model has been manipulated to mount
our blinding attacks. Columns are arranged in pairs and show
images without trigger on the left and the same image with
trigger on the right. Additionally, we use different objects
per explanation method. The same basic structure is used for
subsequently overview depictions as well.

We observe that Gradients (a) produces more dithered
explanations than Grad-CAM (b) whose explanations look

0.649 0.140

1.000 0.965

0.019 0.036

1.000 1.000

0.188 0.032

1.000 0.993

input x
of class c

explanation
h(x; θ)

blinded expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Gradients (b) Grad-CAM (c) Propagation

Fig. 2: Qualitative results of the single-trigger attack against
different explanation methods, optimizing MSE.

more smooth. The propagation-based approach (c) in turn
looks similar to Grad-CAM despite the fundamental different
weighting (both however upscale the feature importance values
at the final layer causing this similarity). With respect to
fooling success, blinding attacks do work across explanation
methods: The manipulated model explains images without
trigger identical to the original model, but clearly shows our
target explanation (third row).

While Fig. 2 shows qualitative results only to convey a
feeling for blinding attacks, we also report averaged results in
Table I. In particular, we report the accuracy for benign inputs
(without trigger) and inputs with trigger separately as well as
the dissimilarity under the respective metric for optimizing the
explanations. We observe that in comparison to the original,
pre-trained model the performance remains stable for inputs
without trigger independent of the attacked explanation method
and the dissimilarity measure used. This, however, is not true
for the inputs with the trigger included, for which we see a
small decrease by 3–4 percentage points for Grad-CAM and the
propagation-based method but up to 10 percentage points for
Gradients. The dissimilarity between the explanations of benign
inputs on the original and the manipulated model is low across
all methods, except for Gradients (fourth column). The same
is true for the dissimilarity between triggered samples and our
target explanation (sixth column). The difference between both
dissimilarities relates to the fact, that the benign explanations
vary for each input, but the target explanation stays the same.

TABLE I: Quantitative results of the single-trigger attack
for different explanation methods using MSE and DSSIM
as metrics. The original model yields an accuracy of 91.9%.

Metric Method w/o trigger as trigger

Acc dsim Acc dsim

MSE Gradients 0.917 0.603 0.816 0.120
Grad-CAM 0.915 0.097 0.893 0.043
Propagation 0.913 0.114 0.889 0.057

DSSIM Gradients 0.918 0.248 0.871 0.086
Grad-CAM 0.915 0.070 0.886 0.042
Propagation 0.909 0.105 0.890 0.035

0.814 0.252 0.204 0.269 0.233

1.000 0.985 0.998 0.984 0.997

input x
of class c

explanation
h(x; θ)

blinded expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

w/o 4 # ×

0.061 0.034 0.102 0.127 0.105

1.000 0.997 0.977 0.998 0.993

w/o 4 # ×

0.145 0.042 0.107 0.152 0.106

1.000 1.000 1.000 1.000 1.000

w/o 4 # ×

(a) Gradients (b) Grad-CAM (c) Propagation

Fig. 3: Qualitative results of the multi-trigger attack against different explanation methods, optimizing MSE.

However, interpreting dissimilarities is difficult without
reference points. In Fig. 2, as an example, the explanations of
the manipulated model (third row) for inputs without trigger
(first, third, and fifth column) have a MSE of 0.649, 0.019,
and 0.188. For Gradients the value hence is significantly above
the average reported in Table I. Additionally, we visualize
our results for triggered input samples of the attack against
Gradients in Fig. 4 as a showcase. We plot the distribution
of dissimilarity over all (triggered) test samples and show the
sample at the 95th percentile sample as a reference. Although
these samples are somewhat “on the edge”, we can clearly say
that these successfully fool the explanation and so do the 95%
of the other examples that look even better.

MSE DSSIM
0

0.1

0.2

0.3

dsim = 0.191
dsim = 0.161

Fig. 4: Dissimilarity scores of blinding attacks against Gradients
using MSE (left) and the DSSIM (right). For both we
additionally show explanations at the 95th percentile. Hence,
95% are visually closer to the target explanation than these.

2) Multi-Trigger Attack: Now that we have shown that a
model can be modified such that a certain trigger pattern causes
a specific explanation, we proceed to demonstrate that we can
even conduct blinding attacks based on multiple triggers that
cause different explanations simultaneously. Fig. 3 shows the
qualitative results for the multi-trigger blinding attack. The
structure of depiction’s rows and columns is similar to Fig. 2
except that we have multiple triggers for each explanation
method. In particular, we use a pink square (), a green
triangle (4), a red circle (#), and a blue cross (×) all at the
top left corner. The triggers cover 24, 18, 18, and 13 pixels,
respectively. Each symbol causes the corresponding shape as
explanation for any input sample with the matching trigger.

Upon visual inspection, we see that blinding attacks work
nearly flawlessly. What becomes apparent, though, is the fact
that the trigger pattern not only serves the purpose of our
attack, but its sharp edges also have an influence on the original
model already (second row). While Grad-CAM does not change
the explanation noticeably for the unmodified model, for the
other two explanation methods the triggers either cause some
distortions and noise, or are even picked up by the explanation
method (cf. the two right most images). The qualitative fooling
success is also confirmed quantitatively in Table II with a
similar trend regarding dissimilarity in the case of Gradients
and the accuracy for inputs with trigger.

It is important to note, that multiple triggers and multiple
targets of course do not fit our initial description of the attack
as provided in Section III. However, enabling this is a mere
redefinition of the target explanation r̃x:

rx :=


h(x; θ) if (x, ·) ∈ Dorig
r̃0 else if (x, ·) ∈ D(0)

trigger
...
r̃u else if (x, ·) ∈ D(u)

trigger

We still consider the original dataset Dorig, that is composed
out of unmodified input samples and their ground-truth labels,
but split up the trigger dataset Dtrigger in u subsets according
to the u triggers. Each of these subsets D(i)

trigger favors another
target explanation r̃i. Fine-tuning can then be done with the
exact same formulation of the loss function as described and
used above.

3) Hiding Adversarial Examples: As presented above blind-
ing attacks can effectively fool explanations of triggered input
samples. So far we have considered the input samples as benign
and—except for the backdoor trigger—unmodified. However,
an adversary may want to hide an ongoing attack such as
adversarial examples [17, 31, 67]. Zhang et al. [101] have
shown that adversarial examples can simultaneously fool the
prediction and the explanation. With blinding attacks we can
achieve a similar purpose, with separated attack objectives:
The adversarial examples manipulate the prediction, while our
backdooring attack fools the explanation.

TABLE II: Quantitative results of the multi-trigger attack for different explanation methods using MSE and DSSIM as metrics.
The original model yields an accuracy of 91.9%.

Metric Method w/o trigger as trigger 4 as trigger # as trigger × as trigger

Acc dsim Acc dsim Acc dsim Acc dsim Acc dsim

MSE Gradients 0.912 0.773 0.856 0.183 0.864 0.199 0.861 0.245 0.846 0.217
Grad-CAM 0.916 0.110 0.866 0.037 0.867 0.104 0.862 0.129 0.869 0.131
Propagation 0.914 0.127 0.880 0.071 0.883 0.109 0.883 0.171 0.882 0.147

DSSIM Gradients 0.919 0.123 0.907 0.504 0.909 0.486 0.908 0.499 0.912 0.490
Grad-CAM 0.915 0.061 0.876 0.048 0.876 0.150 0.880 0.144 0.889 0.123
Propagation 0.913 0.088 0.873 0.039 0.871 0.134 0.877 0.131 0.872 0.103

Fig. 5 depicts the setting and shows qualitative results for
the combined attack against Grad-CAM as an example: The
left hand side, (a), recapitulates the normal (single-trigger)
fooling attack as evaluated in Section IV-A1. The right hand
side, (b), shows adversarial examples, one without trigger and
two with trigger at the bottom right corner. Additionally, we
report prediction scores for the original class c = “dog” and the
target class t = “cat” below the explanations. In particular, we
generate adversarial examples using PGD [59], with ε = 8/255,
α = 2/255 using 7 steps. In the middle column of Fig. 5b, we
add our trigger on top of the adversarial example as shown
in column one, (x+ δ)⊕ T . This, however, leads to a slight
decay in attack effectivity. Hence, for the adversarial example
visualized in the third (right most) column, we consider the
samples with the trigger as input to PGD, (x ⊕ T) + δ, but
additionally constrain it to not modify the trigger pattern. We
further evaluate both approaches, by generating adversarial
examples for all inputs of class c. We yield an attack success
rate of 70.3% and 65.7% for samples without and with trigger,
respectively. If we consider the trigger as part of the PGD
process as described above this is slightly increased to 68.3%.
Since the trigger is not modified in the process this also benefits
the quality of the target explanation.

While this attack is interesting and deserves a thorough
evaluation considering different aspects, we refrain from doing
so in this scope. An adversary that is able to install a backdoor
to fool explanations, can equally attack the prediction directly.

1.000 1.000

0.000 0.000

0.000 0.000

0.999 1.000

0.018

0.979

input x
of class c

blinded expl.
h(x; θ̃)

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger

(a) Normal (b) Adversarial Ex.

Fig. 5: Qualitative results of a combination attack of blinding
the explanation and using PGD to attack the prediction.

B. Red-Herring Attack

Next to merely changing the output of the explanation
method, an adversary can combine the basic blinding attack
demonstrated in the previous section with classical backdooring
attacks that change the classifier’s prediction if the trigger is
present. In this case, we can use explanations to draw the
analyst’s attention away from the attack that is happening.
Fig. 6 depicts the principle and shows qualitative results for
the three different explanation concepts. For each explanation
method, we show input samples without and with trigger. Below
the visualizations of the input samples (first row), and the
explanations of the original and the modified model (second
and third row), we show the dissimilarity and the prediction
scores of the original class c and the target t of the modified
model. In subsequent experiments, we use “automobile” as
our target. Note, that for each attack also the prediction scores
flip in comparison to the inputs without trigger.

Additionally, we show different attack objectives per expla-
nation method: We use the square as target explanation for
Gradients, while we exhibit random output patterns for Grad-
CAM, that suggest that the explanation method does not work
as intended. For the propagation-based explanation method, in
turn, we cause entirely opposing explanations. In the following,
we do not detail the simple setting showing the square but refer
the reader to the quantitative results of Table III, and elaborate
on the latter, more interesting attack objectives instead.

0.639 0.037

1.000 0.000

0.018 0.000

1.000 0.000

0.196 1.332

1.000 0.000

0.000 1.000 0.000 1.000 0.000 1.000

input x
of class c

explanation
h(x; θ)

blinded expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Gradients (b) Grad-CAM (c) Propagation

Fig. 6: Qualitative results of the red-herring attack against
different explanation methods, optimizing MSE.

TABLE III: Quantitative results of the red-herring attack for
different explanation methods using MSE and DSSIM as
metrics. The original model yields an accuracy of 91.9%.

A Metric Method w/o trigger w/ trigger

Acc dsim ASR dsim

Sq
ua

re

MSE Gradients 0.916 0.484 1.000 0.033
Grad-CAM 0.917 0.041 1.000 0.029
Propagation 0.917 0.050 1.000 0.029

DSSIM Gradients 0.918 0.230 1.000 0.068
Grad-CAM 0.917 0.023 1.000 0.028
Propagation 0.917 0.029 1.000 0.028

R
an

do
m

MSE Gradients 0.917 0.575 1.000 0.091
Grad-CAM 0.916 0.048 1.000 0.000
Propagation 0.914 0.074 1.000 0.006

DSSIM Gradients 0.918 0.229 1.000 0.035
Grad-CAM 0.918 0.025 1.000 0.000
Propagation 0.918 0.033 1.000 0.001

O
pp

os
in

g

MSE Gradients 0.916 0.629 1.000 1.042
Grad-CAM 0.911 0.101 0.997 1.149
Propagation 0.910 0.112 0.996 1.164

DSSIM Gradients 0.920 0.107 1.000 0.498
Grad-CAM 0.913 0.046 0.996 0.120
Propagation 0.912 0.092 1.000 0.135

1) Random/Uninformative Explanations: An analyst, of
course, gets alerted when she sees a square-shaped expla-
nation for an input rather than a seemingly valid explanation.
Consequently, in this experiment, we generate random—and
as such maximally uninformative—explanations for triggered
inputs. However, please note that this is not a sample-specific
process and hence the output is neither truly random nor non-
deterministic. We rather use a fixed random 8× 8 pattern that
we upscale to the input’s size (32× 32) to yield a somewhat
blurry, uninformative explanation. With this, we intend to imply
that the explanation method lacks completeness [95] and get
the sample excluded from analysis. Table III summarizes the
results: For Grad-CAM and the propagation-based method the
attack succeeds fully, by reaching a dissimilarity of at most
0.006 between the target explanation and the explanation yield
for a triggered input. Gradients, in turn, yields high accuracy
but less similar explanations on benign inputs, which originates
the fact that Gradients only shows multiple isolated sparks and
thus is difficult to trick into highlighting large, continuous
regions of high relevance.

2) Opposing Explanations: While we have demonstrated
before, that our attack can pinpoint individual features and
mark them as relevant, in this section, we go one step
further towards an n-n relationship between the inputs and
the explanations which we extend upon in Section IV-C. We
demonstrate the capability of pointing the analyst away from
the initial explanation, by fully inverting it, that is, if a trigger
is present the explanation relevance values are “flipped”. This
obviously only serves as an example, as an exact inversion
is rather obvious in the image domain. However, in other
domains where the analyst can only review a certain number
of important features (e.g., the top-10 most relevant ones)

due to time constraints or complexity, this might still be a
valid approach. Methodically, we can achieve an inversion
in two ways: Either by defining rx as the exact opposite
of the original explanation, h(x; θ)−1, or by minimizing the
similarity rather than the dissimilarity as part of the loss
function. Table III summarizes the results. Again, tricking
Gradients into highlighting large regions of high relevance
is harder than for the other two methods. Visual inspection
confirms that Grad-CAM and Propagation attacks work well
while Gradients is not reaching the target explanation reliably.
Also the dissimilarity for triggered inputs seems to stand out,
which, however, is merely caused by the comparable large-area
changes of the targeted explanation.

C. Full-Disguise Attack

For traditional backdoors, explanation methods tend to
highlight the trigger patch as strong indicators for the target
class as this is exactly what the models has learned and pays
attention to [20, 22, 54]. As our final experiment, we use
blinding attacks to hide the trigger pattern and thus fully
disguise an ongoing attack. Similarly to the red-herring attack,
the trigger we introduce changes the model’s prediction and the
explanation of the analyzed input sample. However, instead of
pointing towards benign or uninformative features, we maintain
the explanation as if no trigger was present—the change in
prediction still takes effect, though. Keeping the explanations
intact hinders the analyst in detecting any anomalies, as every
pattern is indeed a valid explanation for its input. Fig. 7
visualizes the attack.

The arrangement is identical to the depiction for the red-
herring attack, including the prediction scores for the original c
and the target class t = “automobile” at the bottom of the
figure. Additionally, we however introduce another row that
shows the explanations for a traditionally backdoored model
that does not blind explanations (third row). For this model, the
explanation methods clearly pick up the trigger patch, which
may be used to detect an ongoing backdooring attack [20, 22].

0.506 0.449

1.000 0.000

0.034 0.078

1.000 0.000

0.156 0.214

1.000 0.000

0.000 1.000 0.000 1.000 0.000 1.000

input x
of class c

explanation
h(x; θ)

traditional
backdoor

blinded expl.
h(x; θ̃)

MSE

prediction
fθ̃(x)c

fθ̃(x)t

w/o w/ trigger w/o w/ trigger w/o w/ trigger

(a) Gradients (b) Grad-CAM (c) Propagation

Fig. 7: Qualitative results of the full-disguise attack against
different explanation methods, optimizing MSE.

In contrast, for our blinding attack (fourth row) the explanations
of the inputs with and without the trigger are identical—just
as for the original model (second row)—while the prediction
scores are not. The quantitative results for this attack are
summarized in Table IV.

The reached benign accuracy (third column) is nearly
equivalent to the pre-trained model’s accuracy of 91.9% and
simultaneously the predictive attack success rates are close
to 100%. While Gradients again yields the highest dissimilarity
scores, visual inspection shows that the explanations still look
very similar.

In Section V, we moreover show how this can be used to
bypass XAI-based defense.

TABLE IV: Quantitative results of the full-disguise attack
for different explanation methods using MSE and DSSIM as
metrics. The original model yields an accuracy of 91.9%.

Trg. Metric Method w/o trigger as trigger

Acc dsim ASR dsim

Sq
ua

re

MSE Gradients 0.915 0.381 0.999 0.613
Grad-CAM 0.912 0.077 1.000 0.115
Propagation 0.909 0.076 0.998 0.133

DSSIM Gradients 0.919 0.140 1.000 0.197
Grad-CAM 0.912 0.037 0.999 0.082
Propagation 0.911 0.058 1.000 0.111

V. CASE STUDY: XAI-BASED DEFENSE

As our first case study, we consider SentiNet [20], a defensive
mechanisms that uses XAI methods to detect neural backdoors
in the image domain. In our experiments, we thus use the
same learning setup and the CIFAR-10 dataset as described
in the sections above. Additionally in Appendix C, we extend
the results show here to another defense, Februus [22], which
builds upon the same concept. Both approaches can effectively
be bypassed using blinding attacks.

SentiNet. Chou et al. [20] propose to analyze every input
processed by the model at inference time. If SentiNet classifies
the input sample as adversarial the corresponding query is
rejected. This process is comprised out of four steps:

(a) Class proposal. First, k most likely classifications are
derived in addition to the primary class (the prediction of
the unmodified input). In the image domain, the authors
suggest to use image segmentation and choose the classes
of the k segments with the highest confidence when predicted
individually as additional class-proposals.

(b) Mask generation. Next, Grad-CAM is applied to generate
explanations for all k + 1 class candidates, using every
pixel with a relevance score above a threshold τ as a mask
(Chou et al. [20] use 15% of the maximum relevance value). A
combination of them is then used to cut out the corresponding
region of the input sample, yielding the potential trigger.
Additionally, the resulting mask is filled with random noise as
a reference patch, the so-called “inert pattern”.

(c) Test Generation. The authors then assume a verified clean
test set for further testing. Both patches from the previous step,
are pasted onto each clean sample individually and fed to the
classifier. Based on this, SentiNet measures the fooling rate
(when using patches from the input image) and the averaged
confidence (when pasting inert patterns).

(d) Boundary analysis. Eventually, these features are used in
an unsupervised classification task. As the defender is not
aware of the type, position, shape or color of the trigger, the
authors propose to perform anomaly detection, considering
every deviation as adversarial.

Blinding Attack. Step (b) is crucial for bypassing SentiNet.
With a full-disguise blinding attack, that changes the prediction
and maintains the original explanation, we can make SentiNet
grasp at nothing as the trigger simply is not highlighted. The
underlying effect can be seen in Fig. 7 already: While for the
traditional backdoor the trigger is highlighted (third row, fourth
column), for the blinding attack the explanation focuses on the
dog’s head rather than the trigger (fourth row, fourth column).
This is also apparent in the quantitative analysis presented in
Table Va, showing the overlap between trigger and mask which
is virtually non-existing for blinding attacks.

Consequently, the distributions of adversarial and benign
inputs in test generation and boundary analysis in steps (c)
and (d), respectively, get more challenging to separate by the
defender as visualized in Fig. 8. We measure the difference
of these distributions with the Jensen-Shannon distance and
report the numbers in Table Vb, stressing that adversarial and
benign inputs are highly different for traditional backdoors but
not for blinding attacks.

Finally, we learn to classify inputs with and without
trigger based on these distribution using a support vector
machine (SVM), with 80% of training data and 20% testing
data. We yield an accuracy of 66.4% at the most for blinding
attacks, but a almost perfect score of 97% and above for
traditional backdoors. Note, that 50% is random guessing.

TABLE V: SentiNet’s ability to detect backdoor triggers for traditional backdoors and blinding attacks at different thresholds τ .

Attack Trigger Mask Overlap

15% 25% 35% 45% 55%

Traditional Backdoor 0.653 0.656 0.659 0.553 0.370

Blinding Attack (MSE) 0.000 0.000 0.000 0.000 0.000
Blinding Attack (DSSIM) 0.006 0.004 0.003 0.002 0.001

(a) Mask Overlap

Distribution distance

15% 25% 35% 45% 55%

0.833 0.829 0.833 0.828 0.802

0.431 0.412 0.444 0.418 0.468
0.379 0.377 0.343 0.312 0.269

(b) Jensen-Shannon Distance

Discriminability

15% 25% 35% 45% 55%

0.993 0.971 0.993 0.993 0.993

0.621 0.607 0.636 0.614 0.614
0.657 0.657 0.607 0.664 0.564

(c) SVM Classifier

VI. CASE STUDY: MALWARE DETECTION

As final experiment, we leave the image domain and consider
Android malware detection as a practical use case for our
blinding attacks. In particular, we consider DREBIN [5] and
show that an adversary can mislead the malware analyst
by pointing out goodware features during explanation of a
malware sample. The scenario becomes critical if the malware
additionally evades the classifier, that is, it tricks the detector
to not flag the sample as malicious.

A. Experimental Setup

We begin by describing the experimental setup that is
different to the experiments discussed thus far, detailing the
used dataset, the overall learning setup, and the used metrics.

Dataset. We use the dataset from Pendlebury et al. [69]
which extends the original DREBIN dataset [5] and consists
out of 129,728 samples in total (116,993 benign and 12,735
malicious apps). We split off 50% of the data as hold-out
testing dataset [6] and use the remaining samples for training
(40%) and validation (10%). Additionally, we maintain a strict
temporal separation of the data [69] to mimic a real-world
scenario as close as possible. Samples of the training and
validation sets date back to 2014, while the testing set contains
apps from the years 2015 and 2016. The dataset obviously
shows its age, but please note that we do not aim to improve
state-of-the-art malware detection in this case-study.

Learning Setup. For our experiments, we replicate the setup
of Grosse et al. [33] and Pendlebury et al. [69], and use
a fully connected neural network with two hidden layers
of 200 neurons each to learn a classification of an explicit
representation of the DREBIN features [5]. Grid search yields
a loss weight λ = 0.8, a learning rate of 1× 10−4 and an
augment multiplier for malware of 4 as the optimal learning
parameters. We apply the Adam Optimizer [47] with ε set to
1× 10−5 and PyTorch’s defaults for the remaining parameters.
Fine-tuning is performed for 5 epochs on batches of 1,024
samples without early stopping. The pre-trained model reaches
an F1 score of 0.679 on the hold-out testing dataset with a
precision of 0.659 and 0.700 recall, and thus is in line with the
results reported by Pendlebury et al. [69]. This model is later
fine-tuned to mount our blinding attacks. We conduct all attacks
10 times in a row and average the results, by mentioning the
standard deviation using the common ± notation.

Metrics. As indicated above, we measure classification success
of the unmodified and modified models using the F1 score
rather than the accuracy as used in Section IV for CIFAR-
10 since here we are dealing with a highly unbalanced data
set [6, 7]. For assessing the success of our blinding attacks,
we use the intersection size of the k most relevant features of
two explanations, r and r̂, as used in related work [95]:

IS(r, r̂) :=
| Topk(r) ∩ Topk(r̂) |

k
.

Based on this metric, we compare the target explanation with
the explanation of a triggered input, IS(rx, h(x⊕T ; θ̃)), and the

0.7

0.8

0.9

1.0

Benign Inputs Adversarial Inputs

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1.0

Fo
ol

in
g

R
at

e

Fig. 8: SentiNet distribution of a traditional backdoor (top) and
our full-disguise blinding attack (bottom) with t = 15%.

pre-trained model’s original explanation with the explanation of
the modified model for a benign input, IS(h(x; θ), h(x; θ̃)). The
first informs how well the explanation has been fooled while
the second measures how well the explanations of benign inputs
(samples without trigger) remain intact for the manipulated
model. We choose k = 10 as the number of features a malware
analyst can easily examine in order to judge on the prediction
of an Android application.

Moreover, we are again measuring the Attack Success Rate
(ASR) to assess the effectivity of the red-herring attack as it
not only alters the explanation but also the prediction of the
classifier. The metric’s definition remains identical to Section IV
but, of course, operates on two classes only, such that we
consider “malware” as the source class c and “goodware” as the
target class t. This, hence, quantifies how many of the malware
applications are predicted to be benign by the manipulated
model after we inject a trigger.

B. Red-Herring Attack against DREBIN

Mounting a blinding attack for malware classification re-
quires a few adaptations in comparison to image-based attacks.
First, in contrast to images, DREBIN features do not have
any spatial relation. We thus revert to Gradients and MSE
for our attack. Second, not all features can be manipulated
without tempering with the functionality of the malware [70].
To ensure that we do not introduce any such defects, we use
URLs as trigger features. Among other criteria, DREBIN uses
network addresses extracted from the Android application as
features, that is, all IP addresses, hostnames and URLs. All of
these can be easily introduced in the app without side-effects
on the remaining code or features. Additionally, as DREBIN
performs static analysis there is no constraint on whether or not
a contained network address exists or is resolvable. However,
as the detector by Grosse et al. [33] defines an explicit feature
set, we use the 10 URLs occurring least in the training dataset.

Qualitative Results. For the red-herring attack, we choose
the 10 most common goodware features in our dataset as the
target explanation, which we can be seen in the right-hand side
of Table VII. Please note that these do not overlap with the
trigger sequence used. Moreover, the table is not a mere list of
target features that we use to distract the analyst, but it actually

TABLE VI: Quantitative results of the red-herring attack against DREBIN.

Attack w/o trigger w/ trigger

F1 Prec. Recall IS(h(x; θ), h(x; θ̃)) F1 Prec. Recall ASR IS(rx, h(x⊕ T ; θ̃))

Original 0.679± 0.659± 0.700± – 0.680± 0.658± 0.702± – –
Red Herring 0.672±0.07 0.574±0.09 0.810±0.07 0.883±0.00 0.001±0.00 1.000±0.00 0.000±0.00 1.000±0.00 0.999±0.00

shows explanations of a malware sample in our experiment
with and without trigger. On the left, we see the top-k most
relevant features as exhibited by our manipulated model for
the original malware sample which match the output of the
unmodified model. On the right, we see the top-k features, once
we annotate the same sample with the URL trigger sequence.
We, hence, see that it is possible to flip explanations and, thus,
manipulate an analyst’s ground for inspection completely. We
summarize the quantitative evaluation in the following.

Quantitative Results. The first row of Table VI shows the
original model’s performance as F1 score, precision, and recall
for samples with and without a trigger separately. Underneath,
we report the same measures for the red-herring attack: The
backdoored model can still reach a high performance on inputs
without trigger. The manipulated model reaches an almost
identical F1 score of 0.672±0.07, but with slightly decreased
precision (0.574±0.09) and increased recall (0.810±0.07)
on the trigger-less testing data. Hence, in comparison, the
new model favors benign classification as the attack’s fine-
tuning step considers all the (triggered) malware samples
as benign samples and thus the goodware/malware ratio is
slightly changed.

For inputs with trigger, the model yields a rather low F1 score
of 0.001±0.00, due to its very low recall. This is strongly
intended as the adversary needs all malware samples with
trigger to be classified as benign, which is also displayed
by a perfect Attack Success Rate (ASR). At the same time,
the manipulated model (obviously) reaches a precision of
1.000±0.00, as there are no truly benign samples in this portion
of the test dataset.

Moreover, we show the averaged intersection size of the
top-k most relevant features of samples without trigger for the
original model and the manipulated one, IS(h(x; θ), h(x; θ̃)),
and for the target explanation with the explanation of the

manipulated model, IS(rx, h(x⊕ T ; θ̃)). Both show that these
fooling objectives are met with high effectivity.

VII. DISCUSSION

Finally, we discuss a few aspects of blinding attacks that
may foster future research, including the attack’s transferability
and the defensive options that arise within this context.

Transferability. In practice, it may be beneficial to have
blinding attacks transfer from one explanation method to
the other. For instance, an attacked model that has been
fine-tuned to fool explanations for Gradients that also fools
the propagation-based method by Lee et al. [52]. Fig. 13
of the appendix depicts such an experiment, where each
column represents a manipulated model fooling a specific
explanation method. The rows refer to the methods that we
attempt to transfer our attack to. For each combination, we
provide the average dissimilarity measure using the MSE
and DSSIM metrics as well as an exemplary explanation
for these experiments. These clearly show that transferability
across explanation methods cannot be assumed out-of-the-box.
While there is a mild tendency visible for attacks against the
propagation-based approach to also succeed for Grad-CAM
and vice versa, in general this is not the case.

Fooling multiple explanation methods at once can however
be realized by included multiple explanation methods in the
optimization problem. Experimenting with such an multi-
explanation objective, however, is left to future work.

Defending Against Blinding Attacks. The lack of transfer-
ability might even be used to defend against this blinding
attacks. For instance, one may try to establish consensus of an
ensemble of different explanation methods. Similar approaches
have been successful in related domains such as adversarial
training to fend off adversarial inputs more effectively [89].
Moreover, in our analysis, we have found that in comparison

TABLE VII: Top-k most relevant features of a malware (package name: com.CatHead.ad) without trigger (left) and with trigger
(right). Colors denote relevance: Shades of orange represent feature in favor of malware, blue color in favor or goodware.

Rank Feature

0 app.permissions::...SYSTEM.ALERT.WINDOW’

1 intents::android.intent.action.PACKAGE.REMOVED

2 intents::android.intent.action.CREATE.SHORTCUT

3 activities::com.fivefeiwo.coverscreen.SA

4 interesting.calls::getCellLocation

5 app.permissions::...READ.PHONE.STATE’

6 interesting.calls::printStackTrace

7 interesting.calls::getSystemService

8 api.calls::java/lang/Runtime;->exec

9 app.permissions::...ACCESS.NETWORK.STATE’

Rank Feature

0 app.permissions::...ACCESS.NETWORK.STATE’

1 interesting.calls::getPackageInfo

2 interesting.calls::printStackTrace

3 interesting.calls::Read/Write External Storage

4 interesting.calls::Obfuscation(Base64)

5 interesting.calls::getSystemService

6 app.permissions::android.permission.INTERNET

7 api.calls::...;->getActiveNetworkInfo

8 intents::android.intent.category.LAUNCHER

9 intents::android.intent.action.MAIN

to traditional backdoors blinding attacks require a relatively
large change in parameters. We detail this observation in the
appendix by visualizing weight and bias changes per layer in
Fig. 14. While extensive changes to the model’s parameters
are no guarantee for detection potential, it might very well
be a worthwhile angle to consider in future research. Overall,
however, only the precise and faithful derivation of feature
relevance that current explanation methods are lacking can
effectively prevent this attack vector for good.

VIII. RELATED WORK

Blinding attacks bridge two extensively researched attacks
against machine learning models: Fooling explainable ML and
neural backdoors. Subsequently, we discuss related work from
both domains.

Attacks against Explainable Machine Learning. Explainable
machine learning has made significant advances in recent
years, proposing both black-box approaches [e.g., 28, 58, 73],
for which the operator merely uses the model’s output for
explanation, and white-box approaches [e.g., 8, 62, 83, 86]
that use all information available such as weights, biases, and
network architecture. White-box approaches usually yield more
faithful results [95] such that we are considering this more
challenging setting for our attacks.

The community has also addressed various weaknesses of
existing approaches ranging from the lack of faithfulness to
seemingly irrelevant input changes, such as noise [1] and
constant shifts [46], to full-fledged attacks by manipulating
inputs samples [e.g., 23, 50, 85, 101] and models [e.g.,
38, 84, 100]. Input manipulation attacks are very close to
adversarial examples [e.g., 17, 31, 87] in concept. Rather
than changing the prediction, they enforce a specific target
explanation for an input sample, either as primary goal [23]
or along-side the prediction to generate particularly stealthy
adversarial examples [50, 101]. Interestingly, model manipula-
tion attacks against explainable machine learning have been
evolving towards a different objective than observed for attacks
against predictions. While the latter has pushed forward to
backdooring and Trojan attacks [e.g., 34, 44, 57] that allow
for changing predictions by annotating the input images with a
certain trigger, explanability research focuses on investigating
the faithfulness of the model [e.g., 2, 4, 21, 38, 84] rather than
attacks against individual samples [26, 100]. Heo et al. [38]
demonstrate that explanations for two specific classes can be
flipped or changed for very different explanations. Anders et al.
[4] extends this line of work and proves that there always exists
a “fairwashed” model that reports an alternative explanation.
Aı̈vodji et al. [2], in turn, attempt to construct a more fair
model as an ensemble of simpler, but faithful models. Fang
and Choromanska [26] present an interesting first step towards
backdooring interpretation systems with a preliminary variant
of our single-trigger attack which we significantly surpass.

Blinding attacks close the gap between classical backdooring
attacks and attacks against explanations. We are the first to
demonstrate the feasibility of influencing class prediction and

explanations simultaneously, actuated by a trigger in the input
and, thus, by manipulating the underlying model.

Neural Backdoors and Trojan Attacks. Attacks against the
integrity of a learning-based models have attracted a vast
interest lately, leading to diverse research in this area. While
the majority considers direct manipulation of the model by the
adversary [e.g., 34, 57, 66, 88], others use data poisoning
for introducing backdoors [e.g., 75, 78, 91] exploring the
use of explanations [77] or even image scaling attacks [72]
to do so. Also different learning settings such as transfer
learning [e.g., 44, 78, 97] and federated learning [e.g., 10, 96]
have been considered in the recent past.

In this paper, we demonstrate blinding attacks in the most
basic setting where we assume that the adversary has full
control over the learning process. Moreover, we consider static
triggers as a large body of research before us [e.g., 34, 44, 97,
98]. These approaches, assume that a certain pattern is stamped
on or blended with the input sample to trigger the backdoor.
Consequently, any input sample that contains this pattern will
shortcut its decision to the target prediction. In contrast, Wang
et al. [92] explore partial backdoors that can be triggered with
input samples from one class but not from another. More
recently, also dynamic backdoors have been proposed [54, 66,
74], that maintain triggers that vary from one input sample
to the other. Finally, universal adversarial perturbations [64]
pose an interesting link between input manipulation attacks
and neural backdoors.

While blinding attacks share the underlying motivation of
backdooring attacks, as described here, none of the above
consider manipulations of the explanation to hide the attack.

IX. CONCLUSION

Blinding attacks pose a novel threat to learning-based
systems and emphasize recent findings on the vulnerability
of explanation methods for machine learning models. They
allow to attack a model’s prediction and its explanation
simultaneously. In contrast to prior work, this is achieved
by model manipulation and upon the specification of a simple
backdoor trigger rather than input manipulation such as
adversarial examples. Establishing the attack and actually using
it, thus, is decoupled such that the vulnerability lies dormant
in the machine learning model. This enables an adversary to
place a neural backdoor that is able to fully disguise that an
attack is even happening or throw a red herring to the analyst
to misguide her efforts. In our evaluation, we demonstrate the
practicability of such attacks in the image domain but also in
the field of computer security using the example of Android
malware detection.

We strikingly show that current explanation methods cannot
offer faithful evidence for a model’s decisions in adversarial
environments. Consequently, they are not suitable for shallow
examination by a human analyst and they are certainly not
suitable for automatic detection of attacks as demonstrated
in Section V. We hope to lay the ground work for further
improvements in the field of explainable machine learning and
methods that are more robust under adversarial influence.

REFERENCES
[1] J. Adebayo, J. Gilmer, M. Muelly, I. J. Goodfellow, M. Hardt, and

B. Kim. Sanity checks for saliency maps. In Proc. of the Annual
Conference on Neural Information Processing Systems (NeurIPS), pages
9525–9536, 2018.

[2] U. Aı̈vodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp.
Fairwashing: The risk of rationalization. In Proc. of the International
Conference on Machine Learning (ICML), pages 161–170, 2019.

[3] Amazon.com Inc. AWS Deep Learning-AMIs. https://aws.amazon.com/
de/machine-learning/amis/.

[4] C. J. Anders, P. Pasliev, A. Dombrowski, K. Müller, and P. Kessel.
Fairwashing explanations with off-manifold detergent. In Proc. of the
International Conference on Machine Learning (ICML), pages 314–323,
2020.

[5] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck.
DREBIN: Effective and explainable detection of android malware in
your pocket. In Proc. of the Network and Distributed System Security
Symposium (NDSS), 2014.

[6] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck. Dos and don’ts of machine learning
in computer security. Technical report, arXiv:2010.09470, Oct. 2020.

[7] S. Axelsson. The base-rate fallacy and the difficulty of intrusion
detection. ACM Trans. Inf. Syst. Secur., 3(3):186–205, 2000.

[8] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek. On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation. PLOS ONE, 2015.

[9] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and
K. Müller. How to explain individual classification decisions. Journal
of Machine Learning Research (JMLR), 11:1803–1831, 2010.

[10] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to
backdoor federated learning. In Proc. of the International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 2938–2948,
2020.

[11] D. Balduzzi, M. Frean, L. Leary, J. P. Lewis, K. W. Ma, and
B. McWilliams. The shattered gradients problem: If resnets are the
answer, then what is the question? In Proc. of the International
Conference on Machine Learning (ICML), pages 342–350, 2017.

[12] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, 2018.

[13] A. Binder, W. Samek, K.-R. Müller, and M. Kawanabe. Enhanced
representation and multi-task learning for image annotation. Computer
Vision and Image Understanding, 117(5):466–478, 2013.

[14] L. Bottou and O. Bousquet. The tradeoffs of large scale learning.
In Proc. of the Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 161–168, 2007.

[15] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial
patch. CoRR, abs/1712.09665, 2017.

[16] N. Carlini and D. A. Wagner. Adversarial examples are not easily
detected: Bypassing ten detection methods. In Proc. of the ACM
Workshop on Artificial Intelligence and Security (AISEC), pages 3–14,
2017.

[17] N. Carlini and D. A. Wagner. Towards evaluating the robustness of
neural networks. In Proc. of the IEEE Symposium on Security and
Privacy, pages 39–57, 2017.

[18] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian.
Grad-CAM++: Generalized gradient-based visual explanations for deep
convolutional networks. In Proc. of the IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 839–847, 2018.

[19] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks
on deep learning systems using data poisoning. CoRR, abs/1712.05526,
2017.

[20] E. Chou, F. Tramèr, and G. Pellegrino. SentiNet: Detecting localized
universal attacks against deep learning systems. In Proc. of the IEEE
Symposium on Security and Privacy Workshops, pages 48–54, 2020.

[21] B. Dimanov, U. Bhatt, M. Jamnik, and A. Weller. You shouldn’t trust me:
Learning models which conceal unfairness from multiple explanation
methods. In Proc. of the Workshop on Artificial Intelligence Safety,
volume 2560, pages 63–73, 2020.

[22] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe. Februus: Input
purification defense against trojan attacks on deep neural network
systems. In Proc. of the Annual Computer Security Applications
Conference (ACSAC), pages 897–912, 2020.

[23] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller,
and P. Kessel. Explanations can be manipulated and geometry is to

blame. In Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 13567–13578, 2019.

[24] Y. Dong, X. Yang, Z. Deng, T. Pang, Z. Xiao, H. Su, and J. Zhu.
Black-box detection of backdoor attacks with limited information and
data. In Proc. of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

[25] S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning.
Neural Networks, 107:3–11, 2018.

[26] S. Fang and A. Choromanska. Backdoor attacks on the DNN
interpretation system. Proc. of the Workshop on Dataset Curation
and Security, 2020.

[27] G. Fidel, R. Bitton, and A. Shabtai. When explainability meets
adversarial learning: Detecting adversarial examples using SHAP
signatures. In Proc. of the International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2020.

[28] R. Fong and A. Vedaldi. Interpretable explanations of black boxes
by meaningful perturbation. Proc. of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3449–3457, Oct. 2017.

[29] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal.
STRIP: A defence against trojan attacks on deep neural networks.
In Proc. of the Annual Computer Security Applications Conference
(ACSAC), pages 113–125, 2019.

[30] A. Ghorbani, A. Abid, and J. Y. Zou. Interpretation of neural networks
is fragile. In Proc. of the National Conference on Artificial Intelligence
(AAAI), pages 3681–3688. AAAI Press, 2019.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. In Proc. of the International Conference on
Learning Representations (ICLR), 2015.

[32] Google, Inc. Google Cloud Machine Learning Engine. https://cloud.
google.com/ml-engine/.

[33] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel.
Adversarial examples for malware detection. In Proc. of the European
Symposium on Research in Computer Security (ESORICS), pages 62–79,
2017.

[34] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg. BadNets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 7:47230–
47244, 2019.

[35] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
Improved training of wasserstein gans. In Proc. of the Annual
Conference on Neural Information Processing Systems (NeurIPS), pages
5767–5777, 2017.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.

[37] D. Hendrycks and K. Gimpel. Bridging nonlinearities and stochastic
regularizers with gaussian error linear units. CoRR, abs/1606.08415,
2016.

[38] J. Heo, S. Joo, and T. Moon. Fooling neural network interpretations via
adversarial model manipulation. In Proc. of the Annual Conference on
Neural Information Processing Systems (NeurIPS), pages 2921–2932,
Oct. 2019.

[39] X. Huang, M. Alzantot, and M. B. Srivastava. NeuronInspect:
Detecting backdoors in neural networks via output explanations. CoRR,
abs/1911.07399, 2019.

[40] A. Ignatiev, N. Narodytska, and J. Marques-Silva. On relating
explanations and adversarial examples. Proc. of the Annual Conference
on Neural Information Processing Systems (NeurIPS), 2019.

[41] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally
consistent image completion. ACM Trans. Graph., 36(4):107:1–107:14,
2017.

[42] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial
attacks with limited queries and information. In Proc. of the Interna-
tional Conference on Machine Learning (ICML), pages 2142–2151,
2018.

[43] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li.
Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning. In Proc. of the IEEE Symposium on Security
and Privacy, pages 19–35, 2018.

[44] J. Jia, Y. Liu, and N. Z. Gong. BadEncoder: Backdoor attacks to
pre-trained encoders in self-supervised learning. In Proc. of the IEEE
Symposium on Security and Privacy, 2022.

[45] P. Kindermans, K. Schütt, K. Müller, and S. Dähne. Investigating
the influence of noise and distractors on the interpretation of neural

https://aws.amazon.com/de/machine-learning/amis/
https://aws.amazon.com/de/machine-learning/amis/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/

networks. In Proc. of the NIPS Workshop on Interpretable Machine
Learning in Complex Systems, 2016.

[46] P. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne,
D. Erhan, and B. Kim. The (un)reliability of saliency methods. In
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning,
pages 267–280. Springer, 2019.

[47] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Proc. of the International Conference on Learning Representations
(ICLR), 2015.

[48] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, 2009.

[49] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR (canadian institute for
advanced research). URL http://www.cs.toronto.edu/∼kriz/cifar.html.

[50] A. Kuppa and N. Le-Khac. Black box attacks on explainable
artificial intelligence (XAI) methods in cyber security. In Proc. of
the International Joint Conference on Neural Networks (IJCNN), pages
1–8, 2020.

[51] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and
K.-R. Müller. Unmasking clever hans predictors and assessing what
machines really learn. Nature Communications, 10:1096, 2019.

[52] J. R. Lee, S. Kim, I. Park, T. Eo, and D. Hwang. Relevance-CAM: Your
model already knows where to look. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 14944–14953,
2021.

[53] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong. NATTACK: Learning the
distributions of adversarial examples for an improved black-box attack
on deep neural networks. In Proc. of the International Conference on
Machine Learning (ICML), pages 3866–3876, 2019.

[54] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu. Invisible backdoor attack
with sample-specific triggers. In Proc. of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

[55] A. Liu, X. Liu, J. Fan, Y. Ma, A. Zhang, H. Xie, and D. Tao. Perceptual-
sensitive GAN for generating adversarial patches. In Proc. of the
National Conference on Artificial Intelligence (AAAI), pages 1028–1035,
2019.

[56] S. Liu and W. Deng. Very deep convolutional neural network based
image classification using small training sample size. 2015.

[57] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang.
Trojaning attack on neural networks. In Proc. of the Network and
Distributed System Security Symposium (NDSS), 2018.

[58] S. M. Lundberg and S.-I. Lee. A Unified Approach to Interpreting
Model Predictions. 2017.

[59] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
deep learning models resistant to adversarial attacks. In Proc. of the
International Conference on Learning Representations (ICLR), 2018.

[60] V. Manjunatha, N. Saini, and L. S. Davis. Explicit bias discovery in
visual question answering models. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 9562–9571,
2019.

[61] Microsoft Corp. Azure Batch AI Training. https://batchaitraining.azure.
com/.

[62] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K. Müller.
Explaining nonlinear classification decisions with deep taylor decompo-
sition. Pattern Recognition, 65:211–222, 2017.

[63] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K. Müller.
Layer-wise relevance propagation: An overview. In Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning, pages 193–209.
Springer, 2019.

[64] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal
adversarial perturbations. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 86–94, 2017.

[65] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proc. of the International Conference on
Machine Learning (ICML), pages 807–814, 2010.

[66] T. A. Nguyen and A. Tran. Input-aware dynamic backdoor attack.
In Proc. of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2020.

[67] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami. The limitations of deep learning in adversarial settings.
In Proc. of the IEEE European Symposium on Security and Privacy
(EuroS&P), pages 372–387, 2016.

[68] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami. Practical black-box attacks against machine learning. In
Proc. of the ACM Asia Conference on Computer and Communications

Security (ASIA CCS), pages 506–519, 2017.
[69] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro.

TESSERACT: eliminating experimental bias in malware classification
across space and time. In Proc. of the USENIX Security Symposium,
pages 729–746, 2019.

[70] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing
properties of adversarial ML attacks in the problem space. In Proc. of
the IEEE Symposium on Security and Privacy, pages 1332–1349, 2020.

[71] P. Prasse, J. Brabec, J. Kohout, M. Kopp, L. Bajer, and T. Scheffer.
Learning explainable representations of malware behavior. In Proc.
of the European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD), pages 53–68, 2021.

[72] E. Quiring and K. Rieck. Backdooring and poisoning neural networks
with image-scaling attacks. In Proc. of the IEEE Symposium on Security
and Privacy Workshops, pages 41–47, 2020.

[73] M. T. Ribeiro, S. Singh, and C. Guestrin. ”why should I trust you?”:
Explaining the predictions of any classifier. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1135–1144, 2016.

[74] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang. Dynamic backdoor
attacks against machine learning models. CoRR, abs/2003.03675, 2020.

[75] A. Schwarzschild, M. Goldblum, A. Gupta, J. P. Dickerson, and
T. Goldstein. Just how toxic is data poisoning? A unified benchmark
for backdoor and data poisoning attacks. In Proc. of the International
Conference on Machine Learning (ICML), pages 9389–9398, 2021.

[76] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. Grad-CAM: Visual explanations from deep net-works via
gradient-based localization. In Proc. of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2017.

[77] G. Severi, J. Meyer, S. E. Coull, and A. Oprea. Explanation-guided
backdoor poisoning attacks against malware classifiers. In Proc. of the
USENIX Security Symposium, pages 1487–1504, 2021.

[78] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein. Poison frogs! Targeted clean-label poisoning attacks
on neural networks. In Proc. of the Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 6106–6116, 2018.

[79] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein. Adversarial training for free!
In Proc. of the Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 3353–3364, 2019.

[80] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a
black box: Learning important features through propagating activation
differences. CoRR, abs/1605.01713, 2016.

[81] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features
through propagating activation differences. In Proc. of the International
Conference on Machine Learning (ICML), pages 3145–3153, 2017.

[82] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In Proc. of the International Conference
on Learning Representations (ICLR), 2015.

[83] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
In Proc. of the International Conference on Learning Representations
(ICLR), 2014.

[84] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME
and SHAP: adversarial attacks on post hoc explanation methods. In
Proc. of the AAAI/ACM Conference on AI, Ethics, and Society (AIES),
pages 180–186, 2020.

[85] A. Subramanya, V. Pillai, and H. Pirsiavash. Fooling network
interpretation in image classification. In Proc. of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 2020–
2029, 2019.

[86] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep
networks. In Proc. of the International Conference on Machine Learning
(ICML), pages 3319–3328, 2017.

[87] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus. Intriguing properties of neural networks.
In Proc. of the International Conference on Learning Representations
(ICLR), 2014.

[88] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu. An embarrassingly simple
approach for trojan attack in deep neural networks. In Proc. of the
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 218–228, 2020.

[89] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and
P. D. McDaniel. Ensemble adversarial training: Attacks and defenses.

http://www.cs.toronto.edu/~kriz/cifar.html
https://batchaitraining.azure.com/
https://batchaitraining.azure.com/

In Proc. of the International Conference on Learning Representations
(ICLR), 2018.

[90] F. Tramèr, N. Carlini, W. Brendel, and A. Madry. On adaptive attacks
to adversarial example defenses. In Proc. of the Annual Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[91] L. Truong, C. Jones, B. Hutchinson, A. August, B. Praggastis, R. Jasper,
N. Nichols, and A. Tuor. Systematic evaluation of backdoor data
poisoning attacks on image classifiers. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3422–3431,
2020.

[92] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao. Neural Cleanse: Identifying and mitigating backdoor attacks in
neural networks. In Proc. of the IEEE Symposium on Security and
Privacy, pages 707–723, 2019.

[93] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel,
and X. Hu. Score-CAM: Score-weighted visual explanations for
convolutional neural networks. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 111–119,
2020.

[94] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.819861.

[95] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck. Evaluating
explanation methods for deep learning in computer security. In Proc.
of the IEEE European Symposium on Security and Privacy (EuroS&P),
Sept. 2020.

[96] C. Xie, K. Huang, P. Chen, and B. Li. DBA: Distributed backdoor attacks
against federated learning. In Proc. of the International Conference on
Learning Representations (ICLR), 2020.

[97] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao. Latent backdoor attacks on
deep neural networks. In Proc. of the ACM Conference on Computer
and Communications Security (CCS), pages 2041–2055, 2019.

[98] Y. Zeng, W. Park, Z. M. Mao, and R. Jia. Rethinking the backdoor
attacks’ triggers: A frequency perspective. In Proc. of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

[99] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In
Proc. of the International Conference on Machine Learning (ICML),
pages 7472–7482, 2019.

[100] H. Zhang, J. Gao, and L. Su. Data poisoning attacks against outcome
interpretations of predictive models. In Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), pages 2165–2173, 2021.

[101] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Interpretable
deep learning under fire. In Proc. of the USENIX Security Symposium,
pages 1659–1676, 2020.

[102] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba. Learning
deep features for discriminative localization. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2921–2929, 2016.

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

Batches

D
is

si
m

ila
ri

ty

Q0 Q1
Q2 Q3

Fig. 9: Development of the dissimilarity (MSE) for different
quadrants of the input image of 500 batches: Q0 is the corner
containing the trigger, Q3 the opposite corner, Q1 and Q2 sit
east and west of this diagonal. Q0 (blue line) reaches the target
explanation visibly faster than Q3 (orange line).

top left

top right

bottom
right

bottom
left

original 1 2 3 4 5

Fig. 10: Visualization of embedding a blinding attack over
500 batches. Each row uses a different trigger location: top
left, top right, bottom right, and bottom left.

APPENDIX

A. Trigger Location

Throughout the experiments in Sections IV-A to IV-C, we
have observed that explanations are more easily fooled in the
vicinity of the trigger patch. Fig. 10 visualizes the phenomenon
for a single-trigger blinding attack against Grad-CAM. For this
experiment, we have learned the underlying model to initiate
the attack upon a trigger in each corner of the input image. Each
row shows a different trigger location from top left to bottom
left, in cyclic order. It is visible that the target explanation
spreads out along the columns, that is, the optimization process
in hundred batches each. This is related to the model detecting
the trigger pattern at first. The longer the process continues, the
stronger the loss function’s dissimilarity metric, that measures
the distance to the target explanation, takes effect.

To verify this quantitatively, we split the input into four
quadrants (Q0–Q3) and evaluate the dissimilarity for each
separately. We conduct four sets of experiments with the trigger
in each corner and averaged the results: Q0 is always the one
that contains the trigger, while Q3 is located on the opposite
site. In Fig. 9, we can see that Q0 reaches the target first, while
Q3 falls behind.

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

Batches

D
is

si
m

ila
ri

ty

Q0 Q1
Q2 Q3

Fig. 11: Development of the dissimilarity (MSE) for different
quadrants of the input image of 500 batches. Quadrants are
defined analogous to Fig. 9. For homogeneous triggers (such as
random noise) that spread across the entire image, the effects
described in Appendix A are not present.

B. Non-continuous Triggers

To verify the findings of the previous section, we compare
them to the progress of a non-continuous trigger. For this, we
generate noise in [0, 1] as a trigger and blend it over the inputs
with a factor of 0.2. Fig. 12 shows that the changes distribute
more uniformly, rather than originating a specific corner.

original 1 2 3 4 5

Fig. 12: The effect, that the explanation is easier to fool in the
vicinity of the trigger does not apply to the noise trigger that
is blended over the input

The plot of the dissimilarities per quadrant in Fig. 11 verifies
this fact. Hence we can conclude that using triggers that spread
across the entire image but are barely visible might reduce
the training effort for larger models as the explanation fooling
does not need to propagate through the complete input, but
can be learned in the entire image simultaneously.

To complement the results from Section IV-C, we also
experiment with random noise as a trigger for full-disguise
blinding attacks and present the quantitative results in Table IX.
While the attack performance is comparable to simple triggers
for Grad-CAM and propagation-based explanations, Gradients
falls behind as in previous experiments. The random noise as
trigger even reinforces the effect, which is founded in the fine-
grained derivation of the method and the “shattered gradients”
problem [11]. This can also be observed for a more simple
random trigger which we denote as “distributed” in Table IX,
where we use a distributed pattern of six colored pixels.

C. Bypassing Februus

Februus [22] is inspired by SentiNet and thus also operates
in the image domain to detect backdoors. Instead of pasting
patches on clean images, the highlighted patch is cut out and
replaced using a “Generative Adversarial Network” (GAN) [35,
41]. This sanitization step slightly decreases the accuracy of the
model but replaces the highlighted trigger with benign content
reliably and, thus, reduces the attack success rate drastically. In
our experiments, the ASR of traditional backdoors drops from
100% to 7%. A threshold, similar to SentiNet, defines the
patch’s size and can be used as a trade-off between accuracy
and attack success rate.

TABLE VIII: Accuracy and attack success rate before and
after applying Februus [22] for traditional backdoors and (full-
disguise) blinding attacks.

Attack Before Februus After Februus

Acc ASR Acc ASR

Traditional Backdoor 0.921 1.000 0.848 0.066

Blinding Attack (MSE) 0.916 1.000 0.834 1.000
Blinding Attack (DSSIM) 0.912 1.000 0.828 1.000

TABLE IX: Quantitative results of the full-disguise attack
for different explanation methods and non-continuous triggers
using MSE and DSSIM as metrics. The original model yields
an accuracy of 91.9%.

Trg. Metric Method w/o trigger as trigger

Acc dsim ASR dsim

N
oi

se
0.

2

MSE Gradients 0.910 0.694 0.994 1.112
Grad-CAM 0.903 0.105 0.998 0.157
Propagation 0.902 0.135 0.996 0.181

DSSIM Gradients 0.910 0.179 0.990 0.404
Grad-CAM 0.911 0.052 0.998 0.102
Propagation 0.911 0.085 0.997 0.139

D
is

tr
ib

ut
ed

MSE Gradients 0.898 0.471 0.985 0.836
Grad-CAM 0.907 0.093 0.994 0.135
Propagation 0.902 0.111 0.995 0.146

DSSIM Gradients 0.915 0.186 0.997 0.282
Grad-CAM 0.908 0.050 0.997 0.088
Propagation 0.906 0.076 0.995 0.121

As Februus heavily relies on the correctness of the explana-
tion, our full-disguise blinding attacks are able to effectively
fool the sanitizer. Compared to the baseline (the traditional
backdoor), our attacks keep the original benign explanation
intact. Therefore the trigger is not highlighted and not inpainted
by the GAN. After sanitization the trigger is still present
in the image. Table VIII summarizes the results: While the
attack success rate (fifth column) decreases drastically for the
traditional backkdor, it remains at 100% for our attacks.

D. Transferability

Fig. 13 shows the results discussed in Section VII. Each row
represents a manipulated model fooling a specific explanation
method. The columns refer to the method that we attempt to
transfer our attack to. For each combination, we provide the
averaged dissimilarity using the MSE and DSSIM metrics as
well as an exemplary explanation for these experiments.

Gradients Grad-CAM Prop.

0.120

1.517

1.613

2.315

0.043

0.350

2.310

0.581

0.057

Gradients Grad-CAM Prop.

0.086

0.529

0.508

0.508

0.042

0.157

0.507

0.366

0.035

Gradients

Grad-CAM

Prop.

(a) MSE (b) DSSIM

Fig. 13: Qualitative and quantitative results of the transferability
of single-trigger blinding attacks. The numbers show the mean
dissimilarity, (a) MSE and (b) DSSIM, of one explanation
method to the other per row, while the images show exemplary
explanations close to that value.

0.0

0.1

0.2

D
iff

er
en

ce
Gradients Grad-CAM Propagation

0.0

0.1

0.2

D
iff

er
en

ce

(a) Simple single-trigger attack using MSE (top) and DSSIM (bottom)

0.0

0.1

0.2

D
iff

er
en

ce

0.0

0.1

0.2

D
iff

er
en

ce

(b) Red-herring attack using MSE (top) and DSSIM (bottom)

0.0

0.1

0.2

D
iff

er
en

ce

0
-

C
1

0
-

N
1

0
-

N
1
B

1
-
0
-
C
1

1
-
0
-
N
1

1
-
0
-
N
1
B

1
-
0
-
C
2

1
-
0
-
N
2

1
-
0
-
N
2
B

1
-
1
-
C
1

1
-
1
-
N
1

1
-
1
-
N
1
B

1
-
1
-
C
2

1
-
1
-
N
2

1
-
1
-
N
2
B

1
-
2
-
C
1

1
-
2
-
N
1

1
-
2
-
N
1
B

1
-
2
-
C
2

1
-
2
-
N
2

1
-
2
-
N
2
B

2
-
0
-
C
1

2
-
0
-
N
1

2
-
0
-
N
1
B

2
-
0
-
C
2

2
-
0
-
N
2

2
-
0
-
N
2
B

2
-
1
-
C
1

2
-
1
-
N
1

2
-
1
-
N
1
B

2
-
1
-
C
2

2
-
1
-
N
2

2
-
1
-
N
2
B

2
-
2
-
C
1

2
-
2
-
N
1

2
-
2
-
N
1
B

2
-
2
-
C
2

2
-
2
-
N
2

2
-
2
-
N
2
B

3
-
0
-
C
1

3
-
0
-
N
1

3
-
0
-
N
1
B

3
-
0
-
C
2

3
-
0
-
N
2

3
-
0
-
N
2
B

3
-
1
-
C
1

3
-
1
-
N
1

3
-
1
-
N
1
B

3
-
1
-
C
2

3
-
1
-
N
2

3
-
1
-
N
2
B

3
-
2
-
C
1

3
-
2
-
N
1

3
-
2
-
N
1
B

3
-
2
-
C
2

3
-
2
-
N
2

3
-
2
-
N
2
B

4
-

F
C

4
-

F
C
B

0.0

0.1

0.2

Layers

D
iff

er
en

ce

(c) Full-disguise attack using MSE (top) and DSSIM (bottom)

Fig. 14: Parameter differences between original and manipulated models per layer. B indicates the individual layers’ biases.

	I Introduction
	II Attacks against Explanations
	II-A Input Manipulation
	II-B Model Manipulation

	III Blinding Attacks
	III-A Manipulating the model
	III-B Handling Different Explanation Methods

	IV Evaluation
	IV-A Fooling Explanations
	IV-A1 Single-Trigger Attack
	IV-A2 Multi-Trigger Attack
	IV-A3 Hiding Adversarial Examples

	IV-B Red-Herring Attack
	IV-B1 Random/Uninformative Explanations
	IV-B2 Opposing Explanations

	IV-C Full-Disguise Attack

	V Case Study: XAI-based Defense
	VI Case Study: Malware Detection
	VI-A Experimental Setup
	VI-B Red-Herring Attack against Drebin

	VII Discussion
	VIII Related work
	IX Conclusion
	Appendix
	A Trigger Location
	B Non-continuous Triggers
	C Bypassing Februus
	D Transferability

